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EFFICIENT COMPUTATION FOR
LARGE SCALE OPTIMIZATION

Final Report

ABSTRACT

Several classes of algorithms for solution of the general

nonlinear programming (constrained optimization) problem, and four

specific implementations of these were chosen and evaluated with

respect to expected speed of computation. A test problem based on the

path generation problem of terrain following / terrain avoidance

flight was developed, and the performance of the chosen optimization

procedures was compared. It was found that the generalized reduced

gradient method was faster and more reliable than either of two

augmented Lagrangian methods and a quadratic approximation method.

However, the solution time for the TF/TA type problem was found to be

far in excess of what would be required. Several simplifications of

the problem statement were attempted in order to decrease computation

time without compromising the integrity of the solution.
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I. INTRODUCTION

While participating as a research associate in the Air Force Summer

Faculty Research Program as part of the Avionics Laboratory at Wright-

Patterson AFB, the author became involved in the simulation of automatic

terrain following/terrain avoidance (TF/TA) flight. It became apparent

that the "path generation problem", as currently stated, involves a huge

computational burden due to the large number of variables and the large

number of state and control constraints. While in theory the problem

can be solved using known techniques, the computation time necessary to

solve it is far beyond the time in which the solution is needed. While

the development of very high speed integrated circuit technology may lessen

this gap, it appears that new computational procedures which decrease the

number of calculations for constrained optimization will be necessary.

The overall thrust of the research project was to study and evaluate

current nonlinear optimization algorithms as to their relative success in

dealing with large problems and to suggest variations in the methods which

could lead to improved performance. Computation time was the key variable

of interest in the study. After evaluations were completed on a test set

of general large problems and in particular on a TF/TA test problem, atten-

tion was paid to assessing several simplifications of the TF/TA path

generation problem since that was one of the driving forces for the invest-

igation. For example, in the TF/TA problem it is important to have "optimal"

points for the beginning of the path, while it may only be necessary to

obtain approximate values for the rest of the segment.

A first research objective was to evaluate candidate algorithms from

within the general classes:

a) generalized reduced gradient techniques
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b) feasible directions techniques

c) augmented Laqranqian techniques (multiplier methods)

and d) quadratic approximation methods

as to their success in solving large (in terms of both number of variables

and number of constraints) nonlinear optimization problems. Particular

implementations of these algorithms differ in the mechanisms used for

carrying out line searches, unconstrained minimizations, nonlinear equation

solving, etc.. Efficient computation through the use of such procedures

as quasi-Newton updating, quadratic approximation, and parallel processing

was addressed. Several specific implementations (computer code) for the

various algorithms were obtained.

We then classified the path generation problem as to the number of

variables, number of linear constraints, number and forms of the nonlinear

constraints, bounds on the variables, etc., and selected reasonable values

for the constraints in a test problem. The mathematical programming test

problem was scaled in order to improve its numerical properties.

Each specific implementation of a computational method had its own

input format and exact problem formulation, and so the test problem was

restated in forms suitable for solution by each of these.

A model for terrain data was developed and this provided realistic

terrain data to the test problem. Several stylized terrains were also

programmned in order to test the performance of the algorithms.

The major project effort was the comparison and evaluation of several

of the "better" methods for constrained nonlinear optimization, with the

path generation problem used as a test.

Finally, the effects that some alternative statements of the optim-

ization problem have on solution time and the accomplishment of the TF/TA

objective were addressed.
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In Section II of this report the background and mathematical state-

ment of the terrain following/ terrain avoidance path generation problem

is given. In Section III a model for terrain data is developed. Inter-

polation procedures for this data are also discussed.

A survey of numerical methods for general nonlinear programming

problems appears in Section IV, while several particular implementations

of the algorithms are described in Section V. In Section VI we state

our test problem, its parameters, and computational experiments that

were carried out. The results of these experiments are stated and

discussed. Also, several modifications of the original problem are

performed and these are evaluated.

Section VII restates project results and conclusions. This is

followed by a Bibliography which includes a survey of relevant literature

and all references that are cited in the text of the report.

The duration of the project was three months and it required the

one-half time dedication of the principal investigator during this period.
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II. THE TERRAIN FOLLOWING I TERRAIN AVOIDANCE PROBLEM

During a ten week period in the summer of 1981, the author developed

a simulation tool for the evaluation of terrain following/terrain avoidance

flight while working with the System Concepts group of the Mission Avionics

division at the Avionics Laboratory of the Wright Aeronautical Laboratories

at Wright-Patterson AFB, Ohio. Current approaches to terrain following and

terrain avoidanceN*  were studied and models for the components of a TF/TA

system were developed. A final report was written which documented the

results obtained during this period [ref. 1]. While working on the simulation

package it became apparent to the author that proposed methods of calculating

desired flight paths would not be able to perform the calculations in near

real time, and that improvement will be necessary before the process can

be implemented. A description of the TF/TA problem, its importance, and

methods of solution will be given at this point.

Sustained low level flight is one key to successful penetration into

a closely monitored region. By flying close to the ground the probability

of detection by ground based or air based radar systems is substantially

reduced due to:

1) direct masking of the vehicle by the terrain between it and

the source of the illumunation (Fig. la)

2) indirect masking due to the inability of the radar system to

distinguish the vehicle from ground clutter. (E. G.-vehicle and

terrain are within the same range or angle resolution cell). (Fig. lb, lc)

(*) For the purposes of this proposal the term "terrain following" refers

to vertical maneuvers (go o- -1 w . "terrain avoidance" refers to horizontal

and vertical maneuvering (go around).
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0 iircraft

Figure la Figure lb Figure ic

Direct Masking Indirect masking Indirect Masking

Even if detection is accomplished, low level flight decreases the probability

of a successful track being initiated.

On the other hand, the probability of collision with the ground or

with obstacles (houses, towers, transmission lines, etc.) is substantially

increased as lower clearance heights are attempted. In order to avoid

collision it is necessary that an accurate description of present and

upcoming terrain features and obstacles be available to the flight path

generator and flight control system so that a safe path can be flown.

An approach that has been taken for automatic terrain following is

depicted below (Fig. 2).

Figure 2

A forward looking radar scans in elevation from an angle to

The return signal provides range and angle of elevation information of

the terrain with respect to the aircraft. A flight path is chosen that

will allow clearance of all terrain points by some predetermined height.

The development of the algorithm which specifies flight comands based

on such information is described in the series of ADLAT studies carried

.. ..... .



out by Calspan Inc. [ref. 2,3]. A radar based automatic terrain following

system is operational in the Air Force F-111B aircraft. This system is

designed for a minimum clearance height on the order of a few hundred feet.

Unfortunately this type of system exhibits the property known as

"ballooning" as depicted in Figure 3.

Flight p" "'fthe aircraft does not see
pn- the flat area until it is

a ,. t/ past the hill.

-Figure 3

The reason for ballooning is that the system is unable to see parts of the

terrain that are masked from its line of sight (Figure 4).

aircraft -bse red

lobserved poin unobservable
area

Figure 4

For terrain following and terrain avoidance a scan in both azimuth and

elevation would be used, an algorithm developed to specify flight commands,

and then these would be implemented by the flight control system. Terrain

masking would remain a problem and would severely limit side to side

maneuvers since ballooning in the horizontal plane could prove disastrous.

Use of the Digital Land Mass Simulation (DLMS) data base from the

Defense Mapping Agency has recently been considered as a potential source

of information to a terrain following/terrain avoidance system. The DLMS

Level II data base breaks the surface of the earth into approximately

100 foot square grids and provides smoothed altitude values for each of
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these grid areas. Incorporation of this data into a terrain following

or terrain avoidance system as a stored on-board map allows greater

look-ahead and fills in areas that are masked from the sensors. The use

of map data for the TF/TA application involves two difficulties. First,

an accurate fix of the aircraft position is required so that the correct

map portion is called down from memory. Second, the DLMS data may not

include obstacle information.

An accurate fix of aircraft position might be obtained by periodically

updating the inertial navigation system (INS) by either terrain contour

correlation (comparison of altimeter data to a stored map) or from the

Global Positioning System (GPS). Once a position is calculated, a section

of the DLMS data would be called down and used to augment sensor data in

order to provide a "best guess" for the terrain ahead.

Work is presently underway to address the three-dimensional terrain

avoidance problem, with the goal of increased survivability and lower minimum

clearance height [ref. 4,5]. Key to the success of this work will be the

necessity to accurately characterize what is ahead and to choose a best

path based on this knowledge.

A depiction of the TF/TA/OA system is shown in Figure 5.

(choose £ path fo the DSm
_v t u seeonndd)

Figure 5

______________neteLr-.-..
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The path generator is the heart of the system. It searches the

augmented map and prescribes a path that attains low altitude flight

within the constraints of aircraft performance and crew.comfort. Lateral

deviation from a prespecified ground track may also be weighted in the

optimization. The flight control system then provides control signals to

the actuators for the aerodynamic surfaces and attempts to follow this

optimal path. It is anticipated that the desired flight path would be

computed for several segments ahead and recomputed as each segment is

flown and new sensor data is obtained. The update time tu would be

determined by such factors as terrain roughness, speed of the aircraft,

and ranges of the sensors. The calculation of the desired path must be

performed within tu seconds. It should also be noted that since only

tu seconds of an N-tu second flight path will be flown, it is only

necessary that the beginning of the calculated best path be optimal,

provided that no constraints are violated on the rest of the path. This

is for protection against the case where optimization in the short run

leads to the necessity to perform impossible maneuvers to avoid a crash.

The time Ntu must be long enough so that a maneuver around a worst case

terrain point will be possible.

A diagram depicting the sequence of events is shown in Figure 6. It

is expected that an update time of 1-2 seconds and N-tu = tf of 5-10 seconds

will be necessary for adequate performance of the system. In essence this

Figure 6

N'tu seconds
,guidanceguidanc N.tu seconds

, 
optimization

, _tu. N., seconds

R terrain data being gathered

Range 
K 0



means that a 5 second long flight path must be generated by the path

generator each second.

As described above, the TF/TA optimization procedure can be seen as

that of minimizing a function of altitude and lateral deviation (cost.

function) under a set of constraints given by

1) aircraft state equations

2) aircraft performance limits and crew comfort restrictions

(state and control constraints)

3) terrain restrictions (trajectory constraints).

For a simple quadratic cost functional and a point mass model for the

aircraft the optimization problem has been stated in [ref. 5] as:

For each path segment of length N-tu = tf seconds

tf 2 21

min f fp(t) + Wp(t) - Yd(t)]jdt

p(t), nz(t) 
0

subject to the state equations (point model for aircraft)

PX = V Cos Ycos three dimensional

py = V cosisini' position

Pz V sin

= -(nzSin)/(V cos'$) heading angle

7' = (nz cos - g cost) / V flight path angle

= p(t) roll rate

= -g sin velocity

and at each trajectory point the constraints

Pz(t) >- terrain height plus safety factor

"-in:6(t) ax flight path angle

#Imin 0 (t) A max bank angle
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imin - 4mt) roll acceleration

z z (t) /P load factor (determined by
min max allowable ride level)

ax (t) pitch jerkA , m n t rZm a x

The control variables for the problem are nz(t) (load factor) and p(t)

(roll rate).

In generality the problem is of the form:

min fo(x , u , t )
U

subject to a x L b state constraints

c & u 6 d control constraints.

As it is stated above, the problem is a continuous time nonlinear

optimal control problem with state and control constraints. The application

of the variational approach, the Pontryagin Maximum principle, or continuous

time dynamic programming leads to computationally infeasible methods of

solution [ref. 6].

Discretization in a time step at transforms the original infinite

dimensional problem (find the functions nz(t) and p(t)), into a finite

dimensional one (find sequences nz(O ) .... ,nz(N-I), p(O) ..... ,p(N-l)).

The problem becomes: N

Problem Pl: min +p(i) W [py(i) - yd(i)]

p(o) ..... ,p(N-1) i=l
n z(O), ..... ,n z(N-1)

subject to the state equations

l(i+l) = f (1(i), nz(i), p(i) ) for all i=l,..,N-I

and a set of constraints which must hold for each i=l,..,N-l.
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The complexity of this optimization problem clearly depends on the

size of the time step 6t and the final time tf. A small discretization

interval leads to a good approximation to the continuous time system and

avoids violation of constraints due to too coarse a grid, but it creates

a larger optimization problem.

There are several different ways of looking at the problem P). First,

it can be viewed as a discrete-time optimal control problem subject to the

state and control constraints. Invocation of the discrete maximum principle

[ref. 6,7] recasts the solution of the optimization as the solution of a

two point boundary value problem. Because of the state constraints and

since the state equations are nonlinear, the solution of the resulting

boundary value problem proves difficult to obtain.

A second approach views the optimization problem as an N stage

sequential decision process. Adopting this point of view the dynamic

programming algorithm [ref. 6, 8, 9, 10, 11, 72] can be used to construct

the optimal control sequences and optimal trajectory. Under this approach

the large number of constraints actually lessen the amount of computation

that would be necessary for the unconstrained case.

The basis for dynamic programming is the "Bellman Principle of

Optimality" which can be stated:

an optimal policy has the property that, whatever the initial

state and initial decision are, all remaining decisions must constitute

an optimal policy with regard to the state resulting from the first

decision".

The principle can be applied to multi-stage decision problems in that

it can be seen that the minimum cost from state x at a stage k is found

by minimizing the sum of the current single stage cost plus the minimum

cost of going to the end of the process from the resulting next state.L.t
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Unfortunately for all but the simplest problems the dynamic programming

algorithm is impractical due to what has become to be known as "the curse

of dimensionality". In order to evaluate minimum costs at each stage it

is necessary to discretize the state and control variables so that they

may take on only a limited number of values. For example, a roll angle

might be discretized to the set J-30' , -200 , -100 , 00, 100, 200, 30°3 . If

for example, there are 7 state variables, each discretized into only 10

values the dynamic programming solution requires a high speed memory of

l0 words, which is beyond the capacity of most large systems.

Computation time is a function of the number of stages, and for a 20

7stage problem there would be on the order of 20 x 10 calculations required,

and at a rate of I million calculations per second this would take about

200 seconds. Another disadvantage of the dynamic programming approach is

that no part of the optimal trajectory is found until the complete trajectory

is calculated. The previously discussed factors make it clear that this

procedure is not suitable for the TF/TA problem as stated.

A third way of viewing Problem P1 is as a general constrained nonlinear

optimization problem. Under this point of view the problem is:

min f( z )
z

subject to gi(z)>, 0 i=l,..,m inequality const.

h.(z)= 0 j=l,...,q equality const.

where the vector z contains all control values and state variable

values for all time steps. That is:

= [nz(O ) ..... nz(N-l),p(O) ..... ,p(N-l),px(O),...,Px(N-l),py(O),...

py (N-l) .................... ,V(O),...,V(N-l) ]t.

The functions h.(z) = 0 include the state equation relations at
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each i=l ....... N, while the gk(z)>O include all inequality constraints

on state and control at each stage i=l ...... N.

It is seen that this is an optimization over 9.N variables subject

to a large set of equality and inequality constraints. Although this

problem is formidable, several methods have been developed for the general

nonlinear programming problem. An outline of some of the more recent and

successful methods appears in Section IV.
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III. TERRAIN MODEL AND INTERPOLATION

One of the TF/TA constraints was that the altitude of the airplane

be greater than a fixed distance above the terrain. This constraint is

of the form
Z - h(X,Y).> Zmi n

where Z is the altitude, and h(X,Y) is the terrain height at position

(X,Y). In order to develop a realistic test problem, and since it is

anticipated that some form of stored and updated map would be used we

decided to make a discrete terrain model. The model has adjustable rough-

ness parameters in order to test the optimization procedure for different

terrain types. In this section we first describe the terrain model and

then proceed to discuss methods for approximating data at non-grid points.

A. Terrain Model

Statistical properties of mean, trend removed, actual terrain have

been shown to be fairly well characterized as Gaussian distributed, with

exponentially decaying correlation among samples. The exponential correlation

function is of the form

Rtr E Z W(x)Z(x+')J = A exp(-7'/Tauc )

where the factor Tauc is called the decorrelation distance. Decorrelation

distances for typical terrain samples were found to vary from 2500Eft. (fairly

rough terrain) to 30,000 ft. (fairly smooth terrain). An illustration of the

effect of Tauc is given in Figure 7. Both cases would have the same

mean value and standard deviation.

Short decorrelation Long decorrelation
distance distance

Figure 7.

/
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For the purposes of the simulation package It was decided to produce

synthetic terrain as "real world". Therefore it was necessary to develop

a procedure to generate points which possessed the desired statistical

properties. These properties were:

1) Terrain characterized as a two-dimensional stochastic

process Z(x,y).

2) Heights of the terrain at each (x,y) point are Gaussian

distributed with mean value Terrmn, and standard deviation

Sdterr.

3) Terrain heights correlated in both dimensions with an

exponential correlation function. The decorrelation distance

was Tauc.

Time series analysis provides a mechanism for generating such a

process. For the one-dime asional case it is known (Ref. 37 ) that a

first-order autoregressive process of the form

Z t = a Zt_ 1 +S + Wt_ 1

(where W t is a zero mean, Gaussian white noise process 
of standard deviation

given by a'w and 6 is a constant trend factor) produces the process, Zt.

This process is also Gaussian, with a mean value

and standard deviation.

Evaluation of the autocorrelation function for this process shows that

R z() A a

For the case at hand, a generalization to a two-dimensional 
process

must be made. (Fig. 8)

W(x.X) H(x,y) Z(x,y)

r!"
white Filter Function desired atatistical

noise process

Fiqure 8.

*
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Consider a general two-dimensional first order discrete autoregressive

process of the form

Z(x,y) = a1 Z(x-l,y) + a2 Z(x,y-1) + a3 Z(x-l,y-1) + f+ w(x,y) (1)

where w(x,y) is a Gaussian white noise process with standard deviation

given by 0- and zero mean.w

It is desired to find if constants al, a , , and d- exist so
• 3w

that the process Z(x,y) possesses a Gaussian distribution with specified

mean, standard deviation, and exponential correlation function of given

decorrelation distance. By analogy to the one-dimensional case, and since

the correlation in the x and y directions should be the same, we choose

a = a2 = a. That is

Z(x,y) = a Z(x-l,y) + a Z(x,y-l) + b Z(x-l,y-l) + I+ w(x,y) (2)

The autocorrelation function for a two-dimensional discrete process is

6 -i Zx,y).Z(x+i,y+j) (3)ij L(,)Z(+YJl
and we -desire that Y ij be of the form

2
ij = (Sdterr) exp(-(i+j)/Tauc) . (4)

Evaluation of the functions 40 0 , )O1, i10, and l' along with

algebraic mainipulations and the enforcement that >10 = D01 and ,i :

generates the set of relations

(- b - 2a 2 ) (2

(1- b - 4a2 - 4 a2 b - b2 + b3)

X10 41 - (b~ + 1) ~'0 (6)

(1 b- b - aY

S2a2 + b - b2 (7)

'1 - 2a _ b'

By setting b =-a 2we arrive at the desired relations
2

0o = w (8)
X(I - a2)2

ia
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~~La LY01= U0  (9)

a2 t~~ i+j 6(0

and Z = 2 2 (11)(1 -a) 2

By setting

a = exp(-l/Tauc)

Terrmn-(l-a)2

and -2 = (Sdterr)2 (1-a 2 ) 2

w

we obtain a two-dimensional stochastic process such that the mean is Terrmn,

the standard deviation is Sdterr, and the process is exponentially

correlated with decorrelation factor, Tauc.

This process needs initial conditions. These are provided as illustrated

in Figure 9.

Constants:

Number Terrmn-(l-a)
of X,

X-points, 2Dimensional 3 Terrmn.(l-a)
NPTS 0 Process = zero mean,

S.D. = Sdterrii-a

A4= zero mean,
3 =__rOS.D. = Sdterr(l-a2)

1-D Process-____

Start of

y-points MPTS
Figure

with Z(1,1) = a Gaussian random variable with standard
deviation = Sdterr, and mean - Terrmn.

Z(l,j) a Z(l,j-I) +f,+ w1  first 'row

Z(i,l) = a Z(i-l,1) +J, + w first column

Z(i,j) = a Z(i-l,J) + a Z(i,j-l) - a2 Z(i-1,j-l) +J + w3 "

i = 2,3,..., NPTS

S2,3,..., MPTS

* J .~ _________
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Due to the large number of Gaussian random variables that will be

generated throughout the simulation a fast procedure to generate such

numbers was needed. The procedure chosen was to generate a uniformly

distributed random variable in (0,I) and then to refer to a tabulation of

the inverse normal distribution function to obtain a Gaussian zero mean,

standard deviation = 1, random variable. This value was then multiplied

by the desired Cand then added to the desired mean value. This type

of procedure is several times faster than the more commonly used procedure

of generating and adding a series of uniformly distributed numbers and then

relying on the laws of large numbers.

A computer program was written to generate artificial terrain according

to the model developed in equations (2) through (11). The input parameters

of this program are

Sdterr = the desired terrain standard deviation in altitude

Terrmn = the desired terrain mean value of altitude

Tauc = the decorrelation distance of the terrain sample

(short Tauc = rough, long Tauc= smooth)

NPTS and MPTS = the number of x and y values to be generated.

The next several figures (T.1 through T.5) show typical terrain maps

generated by the terrain generator program. These plots were made using

the DISSPLA package of plotting routines. It can be seen from the figures

that a wide variety of terrain types can be generated through variation of

the input parameters to the procedure.

Mean 40f

St. Dev. - 200ft ." r grid size

g(200 200)
Tauc 5000ft

Figure T.1
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'Mean =200f t

St. Dev. = 200ft. grid size
(200 x 200)

Tauc =20000ft.

Figure T.2

Figure T.3
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Mean =200f t

St. flev. = 300ft (100 x 100) it.

Tac=100001t. ,

Figure T.4

vc *."*

Mean 200ft

St. Dev. = 100ft rdsz

Tauc = 1000ft.

Figure T.5
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B. Interpolation and Smoothing of the Terrain Data

As described, the terrain model generates terrain heights

h(xi  , Yj) h ij

for a discrete grid of (x,y) values. However, in the course of the optim-

ization of the flight path values of terrain height at positions other

than grid points are needed. One method for estimating unknown data

is to construct a function or sequence of functions which comes close to

describing the known data, and to use these same functions evaluated at

non-grid points as estimates of missing data. Interpolation, least

squares approximation, and spline analysis are examples of this approach.

For the problem at hand two factors must be considered. First, the

data is two-dimensional and made up of many grid points. Calculating one

function to describe all terrain heights is infeasible, and also would

lead to highly oscillatory interpolating functions. A piecewise approxi-

mation covering a neighborhood of points is therefore chosen. Second,

since computation time is the focus of the project, the amount of compu-

tation necessary to arrive at an approximation should be as small as

possible.

Perhaps the simplest procedure for piecewise approximation of two

dimensional data is to first locate the four closest grid points to the

given (x,y) point, and then to linearly interpolate in two dimensions.

The situation is depicted below (Fig. 10)

distance y from y.

distance x
from xi  f ( - h(xi+x,yj+y) to be

estimated.

Ihgur j+lO

Figure 10.
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A bilinear function of the form

h(x,y) = a1 xy + a2 x + a3 y + a4  (12)

is constructed so that

h(O,O) = h

h(O,l) = hi , j + l

h(l,O) hi+l j
13)

h(l,l) = hi+ l j + l

It is easily shown that the four constants aI ... ,a4 are given by

al = (hij - hi,j+l - hi+lj + hi+lj+l)

a2 = (hi+J - hij)

(14)

a3 = (hi,j+l - hij)

and that

h(x,y) = hij xy - x - y + 1) + hi+ l , j -(-x y + x) + (15)

hi j+l'(-xy + y) + h i+I,j+'(xy ) •

It should also be noted that the same result is gotten by first

linearly interpolating across the upper and lower rows, and then

vertically. The order (rows first or columns first) of the linear

interpolations does not matter.

The bilinear approximation has the desirable property that it is

easily calculated. The derivatives of h(x,y) with respect to x and y

are also easily found, except at the grid points. There the derivative

is undefined.

Although the ease of calculation makes the bilinear approximation
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attractive, another consideration is that the mathematical analyses that

construct algorithms for constrianed optimization invariably require in

the proof of convergence that the constraint functions be continuously

differentiable. The bilinear interpolation does not possess this property,

and therefore convergence difficulties may arise.

As alternative procedures for interpolation two other approaches

were also implemented and evaluated. These were a bicubic Hermite inter-

polation scheme and a spline based approach.

The bicubic Hermite interpolating polynomial was chosen as

h(xy)- b x3y 3 + b2y3 3 + b3 + b x3y2 + b6 x2y2 +

_1 + 2 y b3x b4y 5b y 22

b7 xy2 + b8y
2 + b9x3y + b10x2y + b11xy + b12Y +

bl 3x3 + bl4x2 + b15x + b16  (16)

and the following conditions were enforced:
h(O,O) = hij

h(O,l) = hi j + l

h(l,O) = hi+l j  
(17)

h(l,l) = hi+ l , j + l

(that is, it interpolates at the four nearest grid points)

and

_h - 0 at the four grid points
(18)

j.h = 0 at the four grid points.Cly

The second conditions (18) produce continuity in the derivative functions.

The expression for the approximation is calculated to be

h(x,y) = hi.Q(x).Q(y) + h i,j+l.Q(x)'Q(b-y) +
hhi+Iy) Q=y i + h(19)
hi~ 1 jQ(l-x).Q(y) + hi+l1 j+1 -Q(l-x)-Q(l-y)

" ' . ... .. . .. .. . .,. .. .. , .. . .... " " '- -' ' ' -.: -- ' ' - ._ . m . . ...
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where Q(x) = 2x3  3x2 + 1; Q(y) = 2y3  3y2 +1; Q(l-x) :2(1-x)3  3(1-x) 2 +I

Q(l-y) = 2(-y)3 _ 3(l-y) 2 + 1

It is seen that the approximation is a weighted sum of the four nearest

grid points. The fact that the derivatives are continuous can be observed

by noting that h(x,y) is separable and that dQ-->o and dQ..O as x-4O or x->l
dx dy

and as y-.>O or y.-l.

A disadvantage of the bicubic Hermite polynomial interpolation scheme

is that the derivatives are forced to be zero at the grid points. Although

this does insure continuity of the derivative functions, it is somewhat

contrary to intuition in that the terrain at node points is made flat.

This difficulty may be overcome by using a larger array of points with which

to calculate an interpolating function.

We allow the interpolating function to depend on the points

hk,m  where k = i-l,i,i+l,i+2, and m = j-l,j,j+l,j+2

This is illustrated below (Figure 11).

h- -- - - - Ihi-l J -hi-l,j+2

t I I

row i j. -E'iL~h,j+l - -_h__2_

____ the point to be
1h. - hi , estimated is

hi jl - i+l,j+lI-L2-9hi 2i between xi and xi+l
i i i

* ~ hand between yj and

__i_2 --I_ -T I7~ -[j+l.
col j

Figure 11.

The figure shows that the interpolation will use two points on either

side of the unknown value, in the horizontal and the vertical directions

for a total of sixteen grid points.

- i
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The conditions to be enforced are that the approximating function
interpolate to the data at the points (xi,yj), (xi,yj+), (xi+,yj) and

(xi+ 1,yj+l
), and the slope in the x and y directions at these four points

satisfy the general relations

jh (k,m) = h(k+l,m) - h(k-l,m)
220

and 
k = i,i+l (20)

Jh (k,m) = h(k,m+l) - h(k,m-l) m =j,j+
Jy 2

The conditions in (20) assure that the derivative functions are continuous

and that the slope at the grid points makes intuitive sense.

The one-dimensional version of this interpolation problem was termed

convolutional cubic interpolation in a recent report (Ref. 38). The

approximation function for an unknown data point located between xi and xi+l

was found to be given by

f(x) = /2 + x2 - x) f.(3x3  5x2 +)3 
(21)

+ fi+l1 (-3x3 + 4x2 +x) + fi+2-(x - x2

for points xi+x between xi and xi+ l

For the two dimensional case we define the functions

a(x) = (-x3 + x2 -x) a(y) = (-y3 + y2 _ y)

b(x) = (3x3 - 5x2 + 1) b(y) = (3y3 - 5y2 + 1)
+4x 2  3 2(22)

c(x) = (-3x 3 + 4x
2 + x) c(y) = (-3y3 + 4y

2 + y)

d(x) = (x3 - x2) d(y) = (y3 _ y2).

The two dimensional cubic convolution interpolating polynomial is a weighted

sum of 16 data points and is most easily written as the quadratic form

K1.. 1 , 0 h 1 h. 21 Fdx)1
h(x,y) 1/4 [d(y) c(y) b(y) a(yh] ho, I

hl,-l h1,0  hl,l h0,2

h2 ,-l h2 ,0  h2, 1 h2, 2  a (x)'

- -\ •
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It can be seen that the two-dimensional convolution cubic requires

approximately four times as much work to evaluate than the bilinear or

bicubic Hermite interpolating polynomials. Examples were run using each

of these techniques for the evaluation of non-grid data points.

In Section IV we describe classes of algorithms which have been

developed to solve nonlinear programming problems.

S - -.
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IV. ALGORITHMS FOR NONLINEAR PROGRAMMING

The nonlinear programming problem is one of maximizing or minimizing

a functional of n variables where the set of allowable choices for variables

is defined by a set of equality and inequality constraints. The equality

constraints state that the allowable x values must lie on some curve, while

inequality constraints indicate that the feasible x values must lie below

(or above) some curve. Mathematically the problem is stated as

min f(x)
x (1) i

subject to: hi(x) = 0 i=l, .. me (equality constraints)

gj(x) 0 j=l mi  (inequality constraints)

It should be noted that the minimization of f(x) is equivalent to the max-

imization of [-f(x)] and that constraints of the form

a >, q(x) >b-

and bounds on variables, can be cast into the general form

gi(x)> 0

The fundamental theoretical result on the nonlinear programminq

problem was published in 1951 by Kuhn and Tucker (ref. 39). In this paper

necessary and sufficient conditions for constrained extrema were derived.

However, these conditions did not directly lead to iterative solution

methods and it was not until a decade later that effective algorithms for

nonlinear programming were developed. In this section we describe some of

the more successful procedures that are used in nonlinear programming.

First, we consider penalty function methods (refs. 13, 14, 15, 16).

The basic idea here is to force compliance with constraints by adding a

large cost term to an unconstrained functional whenever a constraint is

violated. The advantage of this approach is that powerful methods for

~ 'cs,~'4



unconstrained minimization can be used. For example, for the constrained
optimization problem (1) described on the previous page, a new cost

functional could be formed as:

m. e
2W =f(x) - k m. i lngx]r m* (2)

where rk and sk are large numbers.

Notice that the problem is now unconstrained. The first additional

term forces x to stay in the inequality constrained region, while the

second additional term penalizes deviations from the equality constraints.

The unconstrained value of f2(x) minimized should be the same as the con-

strained value of f(x) , provided that the weights rk and sk are chosen

well. It is often necessary to solve a sequence of unconstrained problems

in order to arrive at a solution to the constrained problem. This is

because too small a value for the weights will allow constraint violations,

while too large a choice may lead to numerical difficulties due to the

insensitivity of f2(x) to changes in f(x). The Sequential Unconstrained

Minimization Technique (SUMT) as described by Fiacco and McCormick in

(Ref. 13) has been among the most successful of the penalty methods. For

an application such as the TF/TA problem the large number of constraints

would tend to limit the usefulness of the penalty function approach as it

is likely that the sum of the penalties would overwhelm the cost that was

being minimized. On the other hand, recent developments in the parallel-

ization of unconstrained techniques (ref. 17, 18, 19, 20) may make the

penalty function approach a good one for problems with relatively few

constraints.

A highly successful method (see 21 for computational results) is the

generalized reduced gradient method developed by Adabie and Carpentier

(ref. 22, 23, and applications in 24, 25). The method is an extension of
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the procedure developed by Wolfe (ref. 26) to the case of nonlinear

constraints. This method, and the method of feasible directions to be

discussed, provided a baseline against which computational improvements

were measured. It has been extensively tested and successfully adapted

to solve problems with a large number of variables and constraints.

The philosophy for the GRG method is similar to that of linear

programming. Through the introduction of basis (at a constraint boundary)

and non-basis variables (within the boundaries) a simplified reduced

problem is formed. This reduced problem is solved and a direction for

search is obtained. When this search direction is projected into the

feasible region (the region of all points which satisfy all constraints),

a direction for the non-reduced (i. e. the original) problem is generated.

Several implementations for the GRG method have been developed.

A third class of algorithms is the set of feasible directions algorithms.

This procedure was first developed by Zoutendijk (ref. 27), and has been

expanded by Polak (ref. 28, 29, 30, 31) and others (ref. 32, 33, 34). The

idea is to pick a starting point that satisfies all the constraints (a

feasible point) and then to find a direction along which a small move

violates no constraints (feasible direction), and at the same time decreases

the cost functional. The procedure progresses as follows:

min f(x) (3)

subject to Gk(x) :O. (we note that equality constraints
can be put in this form)

The feasible domain is the set

F = x I Gk(-x) k 0 for all k . (4)

Define a function PSI

PSI(x) = max iO ; Gk(X)4  (5)
k

and note that PSI(x)>0 if lF and PSI(x) = 0 if x 6 F.
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Also define the " t-active constraint set" as the set of all constraints

within Eof PSI(x). That is

J6(x) jk I Gk(x) PSI(x) -6J. (6)

The algorithm chooses a direction d which is the weighted sum of the

(negative) gradients of f(x) and theE-active constraints (reducing the

cost vs. moving away form the boundary). Then either a line search or

sequence of fractional steps (1, 1/2, 1/4, - the Armijo rule) is instituted

to minimize the cost functional in this direction, while not violating any

constraints. Thus a new feasible point is found and the process is iterated.

Work has been done applying the feasible directions approach to the TF/TA

problem (ref. 5), and while the procedure does generate solutions it

appears that the computation time may be too long for implementation. An

advantage of the feasible directions algorithm is that if the procedure is

halted before an optimal point is found, the resulting suboptimal traj-

ectory is still allowable. In the context of the TF/TA problem this would

mean that the truncated optimization still leads to a safe flight path

that would be within the capability of the airframe to fly. Some

methods, particularly the augmented Lagrangian methods, do not have the

property that current iterates are necessarily feasible.

The augmented Lagrangian methods are also called multiplier methods.

Since the Kuhn-Tucker conditions are necessary, these methods attempt to

find the set of Lagrange multipliers associated with the optimal feasible

point. They have similar structure to the penalty function approach but

avoid the necessity that the rk and sk of those methods approach infinity

in order to achieve convergence. Fletcher (ref. 40) proposed a functional

of the form

ot r(x,v,r) = f(x) + (1/2) rj[h(x)- v1 2 +
j=l
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+ (1/2) e 1 r-jmin[O ' (g.(x)-v.)2], ()}

j=Ie +1e

This was termed an exact penalty function or augmented Lagrangian. The

"penalty parameters" rl,..., rme+m are chosen as large numbers. The

vI, ..... ,Vme+mi are related to the Lagrange multipliers and it is hoped

that each vjrj product approximates ut, the optimal Lagrange multiplier

for constraint j. The iterative procedure is to guess initial values of

the v.'s, and to solve the unconstrained problem

min (x,v,r) (8)
x

This produces a new x. The v,'s are then changed according to a rule

v. = v. - min[ gj(x) , vj ] for inequality constraints

and (9)
v = v. - hW(x) for equality constraints.

The unconstrained problem is then reformulated and solved (equation 8

with the new v value). If the r.'s are chosen sufficiently large then

it may be shown that the x and v vectors approach the optimal x and

Lagrange multipliers u. vjr.

Some variations of the multiplier method as described above were

given by Rockafellar (ref. 41) and Pierre and Lowe (ref. 42). In these

formulations the 0) function (augmented Lagrangian) was chosen somewhat

differently, but the general procedure was similar.

The final class of algorithms that we evaluated was the quadratic

approximation class. This is perhaps the most recent approach and seems

to be successful. In 1963 Wilson (ref. 43) proposed that a constrained

minimum could be found by solving a properly chosen quadratic programming

problem at each iteration. The cost functional was a quadratic approximation

to the Lagrangian and the constraints were linearized about the current x.
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I
The advantage of such an approach would be that there are fairly

successful methods for solving the quadratic programming problem. Wilson

proposed the following algorithm:

Choose a direction d so that d solves

min (1/2) dt. [r 2 L(x,u) ].d + Vx f(x)t.d
d x ... .(10)

subject to hi(x) + x h(x) td = 0 (eqL'5lity const.)

gj(x) + V g.(x)t d > 0 (ineq. constr.)
Thenx~ x c(

Then -new = -old +  d

The Lagrange multipliers for the quadratic subproblem are used to

define the new V L(x,u) and the method is repeated.

Han (ref. 35, page 65) developed a quasi-Newton update for the

Hessian of the Lagrangian and this procedure was modified and implemented

as a computer program by Powell (ref. 44, 45). Another approach is in (ref. 46).

One of the goals of the research project was to identify computational

procedures that would be applicable to large constrained optimization

problems. For example, line searches, the solution of reduced sets of

* nonlinear equations, quadratic programs, etc. are inherent steps in the

overall optimization process described by each of the classes of algorithms.

Particular methods to accomplish such steps change the performance of the

general algorithm. Some work in parallelization has been reported by

Mukai (in ref. 17) and by Chazen and Miranker (ref. 18), while the

quasi-Newton concept developed by Broyden (ref. 36) has been applied to

constrained optimization by Han (ref. 35, page 65).

Computer programs which implement particular versions of the general-

ized reduced gradient, augmented Lagrangian, and quadratic approximation

methods were obtained and slightly modified. These programs are described
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in Section V of this report. An attempt to develop an implementation

of the feasible direction method described by Polak (ref. 31, 33) proved

unsuccessful. No attempt was made to test penalty function methods since

these are now considered noncompetitive (ref. 21).

"* ... ... .....1 " . . .. ...... .... . .... ...... ' - ' ' : , . ; " ' * -" , / .... - ..... ' , =
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V. COMPUTER PROGRAMS FOR CONSTRAINED OPTIMIZATION

Several programs for solving the general nonlinear programming

problem were obtained. One generalized reduced gradient procedure, two

multiplier methods ( augmented Lagrangian), and one quadratic approxi-

mation method were evaluated in a series of tests. In this section we

describe the attributes and the usage of these programs.

The first procedure we implemented was a program that performed the

generalized reduced gradient algorithm. The program is named GRG and was

developed by Lasdon (ref. 24), and has undergone several revisions since

that time. The program is structured as a stand alone subroutine, and

all problem data (constraint bounds, variable bounds, etc. ) is read in

from the card reader stream. A user supplied subroutine CALCFG is

required and contains the calculations of the objective function and the

constraints. The user may specify whether derivatives of objective and

constraints are to be supplied analytically through a user supplied

subroutine PARSH, or whether these are to be calculated by finite difference

approximation. The program consists of seventeen subroutines and the

FORTRAN code is approximately 2625 statements in length.

The actual form of the problem solved by GRG is:

min gM+1 (x) (1)

subject to gi(x) = 0 i=1,..., NEQ (equal. constr.)

0 gik() ! UB(N+i) i=NEQ+I,...,M

(ineq. Constr.)
LB(i).:! x i  !L UB (i) i=l,...,N

That is: There are N variables, NEQ equality constraints, M-NEQ inequality

constraints, and each variable may have lower and upper bounds associated

with it.
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The program adds slack variables XN+1 ....... XN+M to the set

of "natural variables" (Xl,...,xN), and produces the problem:

min gM+l(x)x (2)

subject to gi(x) - XN+i = 0 i=l,...,M

LB(i) xi ! 6 UB(i) i~l,.....N+M

where

LB(i) = UB(i) = 0 i=N,1l,...,N+NEQ

LB(i) = 0 i=N+NEQ+I,..., N+M.

The procedure works as follows. Suppose the current value of x

satisfies all constraints, and that a number NB of these are binding

constraints. The program uses the NB binding constraint equations to

solve for NB of the natural varaibles in terms of the other N-NB natural

variables and the NB slack variables that are associated with the binding

constraints. These N variables (N-NB + NB) are called nonbasic variables.

Now, let w be the vector of basic variables (length NB) and Y be the

vector of nonbasic variables (length N). The vector of binding constraint

functions can then be denoted

a(w,y ) 0 . (R is of length NB) (3)

The set of basic variables can be chosen so that the matrix B (NB x NB)

B g (. iiw.) (4)

is nonsingular at the current value of x.

Using (4), the value w in (3) may be solved for in terms of y. The

objective function is therefore a function of y only (N variables)

and this reduces the original problem (N+M variables) to a simpler problem

min gM+I(w(y),y) F(y)
y (5)

subject to lb -y ub

The original problem (1) is solved by generating and solving a sequence

7'
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of reduced problems. Notice that the reduced problems have no nonlinear

constraints and so can be solved by a gradient method. The search

directions for the reduced problem are determined by the BFGS update and

a quadratic polynomial fit is used for one-dimensional line searches.

Once the search direction is found, a line search is performed to

minimize F(y +.d ) and this requires the solution of the

nonlineer equations

9 (w , y + . d ) 0 (6- (6)

It is possible that some of the basis variables will now violate their

bounds. If this is so, a new set of basis variables will be picked and

a new reduced problem created.

For the GRG program, the initial guess for the solution vector x

need not be feasible. The program will create a subproblem that finds

a feasible point if one is not provided. At the conclusion of each

iteration of the main procedure the method guarantees that the current

value of x is feasible, and that the objective function has been decreased.

The second program that was implemented was LPNLP, as described

in reference (42). This procedure is an augmented Lagrangian method

and the FORTRAN code consists of approximately 1200 statements. The

program is organized as a subroutine to be called by a main program. The

main program dimensions all arrays and workspaces. Two user supplied

subroutines must be provided. Subroutine FXNS provides the objective

function and the constraint equations. Subroutine GRAD provides the

derivatives of the objective and the constraints. No mechanism for

the numerical calculation of derivatives is provided, and due to the

intractability of these calculations for the test problem, a finite

differencing scheme was used to produce the data needed in subroutine

GRAD. All constraint bounds and bounds on variables were read in on
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the card reader stream. Upper and lower bounds on all variables were

explicitly treated. The actual form of the problem solved by LPNLP was:

max f(x) (7)
x

subject to hi(x) a i  i=1,. , NE

gj(x) 4 b. j=1 ...... NI

and ck Xk 4 dk k=1 ..... n

The procedure used is to form an augmented Lagrangian of the form

NE NI
La(XK,/,w) = f(x) + . oi(ai-hi(x)) + b -(bj-g.(x))a i=l 1 1 1- j l J

NE 2
wI . rai-hi(x)]2 - w2 [bj-gj(x)]

3 II

i=l 1 1 6 Ca

- w3 ; i [b.-gj(x)]2  (8)

J b

where
Ca = ISj 0

Cb = = 0 and gj(x);bj•b J -

The values wl , w2, and w3 are penalty weights, while the o-'s and 8's

are Lagrange multipliers. Thus the first three terms of the expression

correspond to the Lagrangian for the constrained problem and the next

three terms are penalties on constraint violations.

The method picks initial -, R.e0 and w*, and solves the unconstrained

problem

max La(X , P°, ., w). (9)
x

Let xI be the solution to the problem (9). This vector will normally not

satisfy all the constraints. At xI the gradient with respect to x
I1

wr Lta (xu conditn 0 (10)
J whereas the Kuhn-Tucker conditions for the original constrained problem



require that
L(x, ) O. (11)

The procedure reassigns (,and B so that

t L(x , . , .. ..) = L ( , . , _ , w ) = 0 (12)

At this point, the weights w may be increased. The new La (x ., ,w

is then maximized with respect to x and the update process for VL.andR

(the Lagrange multipliers) is repeated.

The program provides several options that may be employed in the

generation of the search direction for the unconstrained maximization.

The general procedure for this is the Davidon-Fletcher-Powell update;

however, one may specify a self-scaling variable metric method (ref. 42

page 405). Additional flexibility is provided in that a mode is possible

in which the DFP direction is reset to the gradient direction every N

searches.

One disadvantage of this and the other augmented Lagrangian methods

is the problem of constraint breakthrough. The current value of x at

the end of an iteration is not explicitly forced to be feasible. However,

by allowing the penalty weights to be increased as the iterations progress

one may limit this problem.

A third program we implemented was VFO1AD. The program is a

member of the Harwell Subroutine Library and was written by R. Fletcher

as described in (ref. 40). It consists of approximately 940 statements

of FORTRAN code. The program is an augmented Lagrangian method, and the

problem solved is

min f(x)
x (13)

subject to hi(x) = 0 i=l,...,NEQ

gj(x) >0 j=NEQ+l ..... , M.
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In this procedure the augmented Lagrangian is given by
NEQ

0 ,J ) = f(x) + (h.(x) - 0.)
( - 14)

M
+ '-5' :51 min[ 0 , (gj(x) - j)2 ]

j=NEQ+l J

Each iteration involves the unconstrained minimization of this functional

for a fixed 0 and :-. At the end of each iteration these are changed so

that the sequence of unconstrained minima tend to the solution of the

constrained problem (13). At solution, the products 9i 6-i are the

Lagrange multipliers corresponding to each of the constraints i=l,... ,M.

Convergence is guaranteed (with exact arithmetic) and the method can be

expected to converge at a second order rate (ref. 40).

An initial guess for the solution vector must be provided, but this

need not be a feasible point. The user must also supply a subroutine

which calculates the objective functional, the constraints, and derivatives

of the objective and constraints. Linear constraints are handled in

an efficient manner, and prior information about the form of the Hessian

matrix or the Lagrange multipliers can be utilized. The unconstrained

minimizations are performed by a subroutine VAO9AD which is an efficient

quasi-Newton method that avoids line searches.

Finally, we obtained the quadratic approximation method of Wilson,

Han and Powell (refs. 35 page 65; 43, 44). This program (VFO2AD) was written

by Powell and is part of the Harwell Subroutine Library. It consists

of approximately 1183 lines of FORTRAN. The problem solved is of form

min f(x)
x

subject to (15)
hi(x) 0 i=I,...,NEQ

gi(x) 0 i=l ..... ,M-NEQ
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The method of solution is iterative where each iteration minimizes a

Iquadratic approximation to the Lagrangian subject to linear approximations

to the (nonlinear) constraints. The constraints in the quadratic programm-

ing subproblem are modified to avoid infeasibility. At each iteration the

subproblem is dependent on the current x and is

min dt 2 L(x , u )-d + xf(x)t -d
d x - - (10)

subject to h.(x) + V hj(x) *d = 0 (equality constr.)

gi(x) + Vgi(x) .d 0 (ineq. constr.)

The direction d is found by solving the quadratic program (10) and the

new value of x is chosen as

-new "d

The stepsize K is determined by a quadratic interpolation of a penalty

function, and the program automatically estimates 7 L(xu) by an

* extension of the variable metric method of unconstrained minimization.

The quadratic program that forms the subproblem is solved by the routine

VEO2AD.

The quadratic approximation method as exhibited here has an advantage

over augmented Lagrangian methods in that constraints are explicitly

considered in the calculation of the search direction. Thus, feasibility

of the current iterate is somewhat assured.

It has been stated (ref. 44) that although more work is required to

solve the quadratic subproblems of this method than the unconstrained min-

imizations of the augmented Lagrangian methods, the total number of

function and gradient calculations should be much lower. This may be an

important consideration when the objective and constraint calculation is

costly.

The user of VFO2AD is required to provide an initial guess for the

L.

* ,*-.', & k•
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solution vector. This guess need not be a feasible point. He must

also supply code to evaluate the objective functional, constraint

functions, and the derivatives of these.

Each of the above programs was compiled on a Digital Equipment

Corporation VAX 11/780 computer. Three of the programs (LPNLP, VFO1AD,

and VFO2AD) were modified so that derivatives could be calculated by

finite difference approximations. The program GRG already had this

facility built into it. Several of the programs had machine dependent

parameters or assembly lanouale portions v ic. had to be altered before

they could be run on the VAX system.

We attempted to write a program to implement the feasible directions

algorithm of Polak (refs. 30, 31) but were unable to make it reliable. This

was undoubtedly the fault of this programmer, not of the algorithm. Also,

for completeness we mention two other programs we had hoped to test. The

first of these is a quadratic approximation technique that is different

from that of VFO2AD. The program is called OPRQP/XROP and was written

by M. C. Bartholomew-Biggs (ref. 46). Unfortunately we were unable to

obtain a copy of this from the author in time. Second was a program

called MINOS which was furnished by the Stanford University Center for

Information Technology. This 9600 line program is designed to handle

large, sparse nonlinear progranming problems. The algorithm is a projected

augmented Lagrangian method which solves a sequence of linearly constrained

subproblems by a reduced gradient technique. We received this package

too late to adapt our test problem to the rather intricate input format

required. The presence of several undocumented machine dependent parameters.

also hindered the use of this program in our study.

In Section VI we describe our test problem and the computational

results for each of the subroutines we studied.

• .. .... ~~~~~. .: , , ', _ , ..



42

VI. COMPUTATIONAL RESULTS

In this section we describe a series of tests that were used to:

1) Check the correctness of the computer code for the four programs

that were obtained

2) Demonstrate that the inclusion of a finite differencing scheme

for gradient calculations was correct

3) Assess the relative performance of the four programs on small and

medium sized nonlinear programming problems which had known solutions

4) Evaluate the feasibility of attempting to solve the path generation

problem of terrain following/terrain avoidance flight path generation

in real time

and

5) To modify the fcrmulation of the path generation problem in an

attempt to improve the speed of solution.

As stated in Secticn V, four computer programs were used in the study.

In order to make sure that these were correctly implemented on our system,

and to become fam'liar with their use (choice of parameters, input

formats, etc.) we first attempted to find constrained minima of several

standard problems whose solutions are known. A typical example was

min f(x) 2 2 + X1X2 -14x, - 16x2 + (x3 - 10)2 +

x

4(x4 - 5)2 + (x 5 -3)2 + 2(x6 - 1)2 + 5x72 (2)

7(x8 - 11) 2 + 2(x9 - 10) 2 + (xlo - 7)2 + 45

subject to the set of constraints

105 - 4x, - 5x2 + 3x7 - 9x8  P 0

-lOxI + 8x2 + 17x 7 - 2x8 ; 0



8x I - 2x 2 - 5x9 + 2xlO + 12 ) 0

-3(x1  2) - 4(x2 - 3) - 2x3 2 + 7x4 + 120 .*0

-5x 2  8x 2 - (x3 -6)
2 + 2x4 + 40

_82 )2 52-0.5(x1  8) -2(x 2 - 4) - 3x5  + X6 + 30 0

2 2
-x 1  2(x 2  2) + 2xlx 2 - 14x 5 + 6x6 - 0

2
3x1 -6x 2 - 12(x9 - 8) + 7xl 0

This problem has ten variables and eight inequality constraints. The

objective function to be minimizedas well as four of the constraints,

are nonlinear. A feasible point given by

(x1 ... . . . xlO) = (2,3,5,5,1,2,7,3,6,10)

was chosen as an initial guess for the solution vector. At this value

of x the objective function has value f(x) = 753.

The exact solution to the problem has a minimum objective function

f(x*) = 24.3062091

All of our programs converged to the solution successfully. Ta!le 1

compares solution times, function evaluations, etc.

TABLE 1.

Relative Success of the Four Programs

in Solving (1)

Program Outer Iterations Total Function Execution Time
name performed evaluations (double precision)

GRG 18 367(220) 4.35 sec

LPNLP 43 583(430) 6.6 sec

VFOIAD 5 792(720) 4.32 sec

VFO2AD 11 154(140) 10.09 sec

Under Total Function Evaluations the two numbers refer to the actual
number of times the objective function and constraints were calculated, and
the amount of that number that were part of gradient calculations by finite
differences. Therefore, the number of gradient calls were 22, 43, 72, and 14.

'I 4
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From the Table the most striking fact is that VF02AD took substantially

longer than the ot;hers, but used far fewer function evaluations. In a

situation where the evaluation of the function is a time consuming operation

this program may have an advantage. The author (ref. 44) states that this

program should be considered a preliminary version since the algorithm for

solving the quadratic subproblems has not been optimized for this particular

application.

We also notice that the generalized reduced gradient algorithm (GRG)

had significantly fewer function evaluations than did VFOIAD ( an augmented

Lagrangian method), and these were similar in execution time.

The relative rankings among the four routines as shown in the table

were fairly consistent, with GRG usually being the fastest and VFO2AD the

slowest. The routine LPNLP seemed to be sensitive to the particular problem,

and for some cases it had not reached a solution in the allotted maximum

number of iterations.

The next step in our investigation was to design a test problem of a

form that matched the TF/TA path generation problem in its format. The

continuous time version of the problem was

min jtf I pz(t)2  + W-[py(t) - Yd(t)]2 dt
P(t),n zMt 0

subject to the state equations (derived for a point aircraft)

(2)
x V Cos~ cosy three dimensional position

py = V cost sin)6

Pz = V sin

= -(nz sin#)/(V cos) heading

= (1 cost- g cosY) / V flight path angle

= p(t) roll rate

= -g sin Y velocity
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At each time t the following bounds must hold

pz(t) 4 terrain height plus a safety factor

in 4-(t) -, flight path angle bounds°Min -max

*- 4%(t) ma bank angle boundsmin -max

- (t) 4 roll acceleration boundsrain max

n nz (t) _- nZm load factor constraints

nin max

mm _z(t) _n' n z pitch jerk constraintsmin max

The control variables for the problem are the load factor (nz(t)) and the

roll rate (p(t)). The number W is a weighting factor between deviations

from a desired ground path Yd(t), and altitude minimization. A large

value of W forces the path to be close to Yd' while a small weighting

factor allows deviations if a lower altitude path can be found. The

weighting factor could also be a function of time or position.

In order to put the problem above into a framework that is solvable

by mathematical programming methods we discretize the problem in time.

Let the interval t=O to t=tf be broken into a set of N steps of

length h. That is:tf = N-h. Now, if the control variables n z(t) and

p(t) are considered to be constants over intervals of the form

( k h , k+l h ) i.e. one time step,

the Euler integration step may be used to turn the original differential

equations into a set of difference equations.

Euler's method is

if x = f(x,t) then x([k+l].h) -x(k.h) + hf(x(k-h), k.h)

provided h is small. Starting at k=O, an approximation to the solution of

the differential equation is given by the sequence x(j.h),j=O ..... ,N



When the Euler procedure is applied to the state equations of

problem (2) we obtain

PX (k+1) = p x(k) + h [V(k)* cos (k) *cos rik)

py(k+l) = py(k) + h [V(k) * cos' (k) *sin -'(k)(3

PZ (k+1) = p z (k) + h [V(k) * sin (k)]

kl = 9'(k) + h [ - (n z (k) sinr(k) )/ (V(k) cos ',(k) ]

~(k+l) = (k) + h [(ni (k cos 4'(k) -g cos 2 (k) )/ V(k) ]

~(k+l) = '(k) + h [ p(k) I

V(k+l) V(k) + h [ -g sin W(k)

and these must hold for each k = 0...N-1. Thus, there are 7N equations

of the form

Q(k+l) - Q(k) +h[. ] = 0

that must be satisfied. (Notationally the Q in the previous stands for

the variables pJ P........,V .

The set of constraints of (2) must also be satisfied at each k. These

are

min max

nin max

(4)

~min (N)~~' 6N bounds on the variables

IminL- (P(1) 4Pmax and .

'min ~ 19N max

min max



There are sets of bounds on and another set on n z  We

state these in terms of the variables by using finite differences.

n(k) (nz(k+2) - 2 n(k+1) + n(k) )/ h
2  k=1,... N-2

(5)

and pk) ' (p(k+l) - p(k) )/ h k=1 ..... N-1

Finally, there is the altitude constraint. This is given by

p?(k) - [terrain( Dx(k),py(k) ) + safety factor]? 0 k=1,...,N

The cost fucntional is approximated by the sum

N

pz(i) 2 + W[p(i) - Y(i) ]2j. (6)

It may be seen that as stated the problem is one of minimizing

(12 N + 2) variables, with 7 N equality constraints, 5 N - 6 inequality

constraints, and 6 N variables with bounds.

The values of the bounds were chosen as typical values and are

shown below:

= flight path angle = between -.2rad and .5rad

Pz= altitude = greater than 60 feet above sea level

py= constrained to be within 600 feet of Yd

4= roll angle = -irad to +Irad

nz  load factor : between 0.3g and 3 g

nz = pitch jerk : between -1.5g and 3g

p : roll rate : -Irad/sec to +Irad/sec

The initial velocity was chosen as 500ft/sec, and terrain clearance-S50 ft.

It is usually desirable to scale an optimization problem so that the

objective functional, constraints and variables take on values of approx-

imately the same order of magnitude. Scaling to an approximate magnitude

of I leads to improved numerical properties.

. . ..... .. ............. ' .. ........... % ' '- --------------------.-- . .
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Let us choose scale factors I
Px (new) = Px /1000

py(new) = p/1O00

pz(new) = pz/ 500

t-' (new) = 5

'(new) = 5 7 (7)

V (new) = V/500

nz (new) = nz/g = nz/32.2

p(new) = 5 p

nz(new) = nz/32.2

nz(new) = nz/32.2

p (new) 5

lk(new) = 5

This has the effect of changing the equality constraints and the bounds

on variables.

For the terrain function we first chose a smooth function of the

form 2
terrain(x,y) = 100 exp(-vall ) exp(-val22)

where
vall = (x-2500)/1000 ; val2 = (y-I000)/250

This corresponds to an 800 foot hill centered at (x,y) = (2500,1000).

Since straight and level flight would consist of the sequence of

controls n z(t) = 1 and p(t) = 0, the initial guess provided by evaluating

the state trajectory due to such a sequence of controls and initial

altitude 850ft certainly is a feasible point in the space of variables.

A five segment problem was Lttempted. We found that even for

this small problem none of the programs converged to a solution in a

reasonable amount of time (20mins. of computer execution). This forced us



to look again at the problem we had stated. We noted that although

the state variables of the airplane were considered free variables

and then were subject to a set of equality constraints that arise from

the state equations, an alternative point of view would be that only

the control variables (n and p) are free, and that these are the variables
z

to be optimized over. The state variables are not free but rather are

forced once the control sequence and initial conditions are given. That

is: the objective functional and the equality constraints are implicit

functions of nz and p. The state variables and state equations serve

only as "black boxes" in the generation of the inequality constraints

and boundedness conditions. The output of the diagram below

Control State x(u) Constraint constraints
u Equations state Functio g(x(u))

variables

is also seen as a function of control sequence only.

u the whole
process > g2(u)

Having made that observation we reformulated the problem as one of

selecting 2 N control variables, subject to 12 N - 6 inequality constraints,

no equality constraints, and such that there are N upper and N lower

bounds on the variables.

The scaled and reformulated problem is shown on the following

page (Fig. 12).

With the reformulated problem we obtained convergence in a five

step problem with each of our four programs. Since the five step

problem is unrealistic and uninteresting, most of our tests were done

on problems involving 10 or more steps.
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SUBROUTINE FXNS(X,F,FE,FI)
IMPLICIT REAL*8(A-H,O-Z)
DIMENSION X(1),FE(1),FI(l),YDES(2O',,XX(2O1)
K-10
T-1 .0
GPRAV=. 322

C K=#OF TIME STEPS, T=TIME STEP SIZE
DO 22 I=I,K

22 YDES(I)-1. Ithe desired y path is y=1OO0ft
VO- 1.
xo=o.0
YO-1. 10 initial values
ZU=l .7 v=500, y=1100, z=850
WEIGHT=0 .01
XX(1)=(XO+T*(V012.))
XX(K+1)=YO

XX(*K+)=} ger.erate first step of stateXX( 3*K+ 1)-0 .0
X4*K+1)=(T/VO)*GRAV*(X(1)-l.) equations

XX(5*K+1 )=T*X(K+1)
XX(6*K+1 )=VO
KMI=K-1
SuM=0.O
DO I 1=I,KMI
VELOC=XX( 6*K+I)
PSI=XX(3*K+I)*.2
GAMMA=XXC4*K+I )*.2cacltthseuneo
PHI=XX(5*K+I)*.2cacltthseuneo
ENZ=X( 1+1) state variables
PEE=X(K+I+l)
XX( I+1)=(XX( I)+T*(VELOC/2.)*DCOS(GAIIMA)*DCOS(PSI))
XX(K1I+1 )=(XX(K+I)+T*CVELOC/2. )*DCOS(GAM)*

&DSTN(PSI))
XX(2*K+1+1 )=(XX(2*K+I)+T*VELOC*DSIN(GAMMA))
XX(3*K+I+i )=(XX(3*K+I)-(T*ENZ*GRAV*

&DSINCPHI)/CVELOC*DCOS(GAMMA))))
KX((4*K+I+1 )=(yj(4*K+I)+(T*GRAV/VELOYC)*(ENZ*

&DCOS(PHI)-DCOS(GAMMA)))
Xjc(5*K+I+1 )=(XX(5*K+I)+T*PEE)
XX(6*K+I+1)=CXX(6*K+I)-T*GRAV*DSINCGAMMA)/5.)

10 SUM-SUM+(XX(2*K+I)**2)+WElGHT*4.*(XX(K+I)-YDES(l))**2
I CONTINUE

F-SUM+XX( 2*K+K)**2+WEIGHT*4 .*(Xj(K+K)-YDES(K) )**2f
F--F objective

DO 19 I-1,K function
FI(I)=-(XX(K+I)-.6)

FI(2*K+I)--(XX(4*K+I)+1.) constraints are
FI(3*K+I)--(XXC 5*K+I)+5.) functions of the
IF(I.EQ.K) GO TO 19 state variables
FIC4*K+I)=-((X(K+I+l )-X(K-II))/T+5.)
IF(I.EQ.KM1) GO TO 19

19 CONTINUE

Fig. 12(a)
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IVAL-6*K-3
C##############THIS IS THE INEQUALITY CONSTRAINT FOR ALTITUDE######

DO 4 II=I,K
XII=XX(II)*1O00.
XKPII=XX(K+II)*IO00.
CALL TERRAIN(XII,XKPII,TERR)
FI(IVAL+II)=-(XX(2*K+II)-((TERR+50.)/500.))

4 CONTINUE

C######/###END OF ALTITUDE CONSTRAINT#############
IVL2=6*K-3
IVAL=7*K-3
JJ=IVAL
ISKI=K
ISK2=2*K
DO 99 II=I,IVL2

IF(II.GT.ISKI.AND.II.LE.ISK2) GO TO 99
JJ=JJ+1
FI(JJ)=-FI(II)

99 CONTINUE
RETURN

END Fig 12 (cont)

Gradients of the cost function and the constraint functions were

calculated by finite difference approximation. A program which illustrates

this is shown in Fig. 13. The derivative of a function c.(x) with respect

to variable xi is approximated by

Jcj (x) cj~ + hi - c(x)
- -V c - where h. is zero

J xi hi except -or a small
value in the i place

SUBROUTINE VFOIBD(N,M,X)
IMPLICIT REAL*8(A-H,O-Z)

DIMENSION X(1),C2(134)
COMMON /VFOICD/F
COMMON /VFOIDD/G(50)
COMMON /VFO1ED/C(402)
COMMON /VFO1FD/GC(20,134)

K=N/2
CALL V2CONST(K,N,M,X,C,F) - evaluate the objective and
DO 3 I=I,N the constraints. V2CONST
TEMP-X(I) is similar to that of Fig. 12
DELX-1.OD-05
IF(DABS(TEMP).LT.1.ODO) GO TO 20
DELX-DELX*DABS(TEMP)3 change each element of the

20 X(I)-TEMP+DELX variable vector by a
CALL V2CONST(K,N,MX,C2,F2) small amount
G(I)-(F2-F)/DELX
DO 35 J=1,M the gradient is calculated

35 GC(I,J)-(C2(J)-C(J))/DELX

3 X(I)-TEMP - the variable is returned to
RETURN its original value
END

Fig. 13 - Finite Differences for

Gradient Calculations



For the terrain constraint

Pz - terr(p x % p) 50 . 0

we evaluate the gradient by the chain rule,

J Z dterr(Py) fdterr(px p  dp Jterr(pP) p

i i dPy dxi

+ jpz

The partial derivatives of the terrain function are found by analytically

differentiating the terrain function (i. e. calculating the slope at the

point (p P ). The other partial derivatives are found by the finite

difference method as in Figure 13.

With the new formulation for the problem we were able to obtain

convergence for each of our four test programs. Typical results appear

in Table 2, which treats a 10 step problem. For this, the number of

variables is 20, the number of inequality constraints is 114, and the

10 load factor variables are bounded above and below.

TABLE 2.

Typical Results for a Ten Step Problem

Program Outer Iterations Total Function Execution Time
name performed Evaluations (double precision)

GRG 61 1555 102 sec

LPNLP 262 6026 238 sec

VFO1AD 5 b481 289 sec

VFO2AD 11 231 302 sec

It should be noted that the GRG program consistently performed better

than the others. The LPNLP program was somewhat sensitive in that it

sometimes did converge taking approximately 11 the time of GRG, while at
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other times very long runs resulted with no convergence obtained.

The programs VFO1AD and VFO2AD were more reliable than IPNLP, but

the solution time and reliability of these did not surpass GRG.

The weighting factor in the cost functional should make a difference

in the optimal trajectory calculated. Weighting deviations from the

desired Yd(k) heavily should force the trajectory to stay close to Yd'

at a cost of increased altitude. In Figure 14 we illustrate the effect

of weighting on the solution of the problem.

5000. 1000. -

4500. 900. -

4000. 800. -/- -

dist. a / "
along 35,00 -00. ----- -

track b
3000. 600.

2500. -~500. -

2000. 400."  ." 'C

1500. 300.

1000. r 200.- - . _.

500. 100. -- - --

500 1000 1500 0. 1000. 2000. 3000. 401J'.. -Act".

cross track distance along track

01000(a) - weight = 1.0
(a) - weight = 1.0 (b) - weight = 5.0

weigt =5.0(c) - terrain height along the
- path Yd

Fig. 14a Fig. 14b
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600.

500.

400

~300. ,.,.- -

100. -distance

between
flight

0. & terrain
0. 1000. 2000. 3000. 4000. 5000.

distance along the track (ft)

ALTITUDE OF THE FLIGHT PATH (a) AND TERRAIN HEIGHT (b)

FOR THE CASE OF WEIGHT = 1.0
Fia. 14c

600.

a
400. -

41300. -

200. - - - distance
between
flight &

100. - terrain

0. * - - - - - - - - -

0. 1000. 2000. 3000. 4000. 5000.
distance along the track (ft)

ALTITUDE OF THE FLIGHT PATH (a) AND TERRAIN HEIGHT (b)

FOR THE CASE OF WEIGHT = 5.0

Fiq 14d

Notice that a lower altitude if possible when the flight path is

allowed to go around the obstacle.

4
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After working with the special case of stylized continuous terrain,

as in the previous discussion, we incorporated the terrain generation

model that was described in Section Ill. The computational results

were similar to what had already been observed. The GRG method was

the most successful of the four. LPNLP was again erratic in its

performance. In general the solution times were slightly less than was

shown in Table 2 for cases where the terrain was fairly smooth, while

comparable to the values in Table 2 for rougher terrain. The VFO2AD

and GRG programs were more reliable at finding a better (local) minimum

than were either of the augmented Lagrangian methods. There were

convergence problems in several cases of the LPNLP program.

Another factor that seemed to have minor effect was the choice of

approximation method for non-grid terrain points. No consistent trends

could be seen in comparing the computational performance of the bilinear,

bicubic Hermite, and the convolutional cubic methods. We suspect that

this is so partly because the calculation of the terrain height and

terrain slopes were a minor part of the total function evaluation,

providing only ten of the 134 total constraints. The discontinuity

of the derivative of the bilinear method would also be unlikely to arise

in practice.

Problem Simplifications

It is apparent from the calculation times of Table 2 that none of

the programs is capable of finding an optimal ten segment path in any

time approaching real time. For example, it would be desired that a

ten second segment of flight path be recalculated each second. We

attempted to modify the statement of the problem in order to

make it somewhat more tractable, while still maintaining its basic

structure.
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One such simplification was to allow a non-uniform time step in

the control sequence. As the problem has been stated the total time tf

was broken into constant control intervals h seconds in length. Since

only the first part (an amount tu seconds) of the total tf seconds of

flight path to be computed will be actually flown before a new path

calculation is performed, there may be no need to treat all time steps as

of equal length. For example, a 20 second period could be done in steps

of lengths

1, 1, 1.5, 3.0, 5.0, 8.5

The twenty second period would therefore be covered in only six steps

instead of twenty. As long as the constraints for all portions of the

trajectory are satisfied, a major saving in computation could be realized.

If the initial portions of the trajectory of the problem for six non-uniform

steps turned out to be similar to the uniform step, twenty segment

solution there would be reason to use the nonuniform step method. The

optimal path generated by the nonuniform step method would be less good

than the full method, but this trajectory would be safe and within the

capability of the aircraft. This is because the demand for a longer

period between control adjustment causes the algorithm to become conserv-

ative.

An example of the above procedure was run. A six step problem

was made to cover 10 seconds by choosing the intervals as

1, 1.1, 1.3, 1.7, 2.3, 2.6 .

The time for solution of the ten step problem was 314 seconds using the

VFO1AD procedure, while the same method applied to the modified problem

reached a solution in 89. seconds. The trajectories obtained were

comparable, with the non-uniform (i. e. larger average step) case taking

a wider cross-track swing due to the inability of the controls of that

1"airframe" to respond as quickly.
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Weighting early values in the cost functional more than later, ones

would presumably force the algorithm to make the initial part of the path

approach its optimum in fewer iterations than would otherwise be the

case. Thus, it would be conceivable that the optimization could be stopped

sooner. Provided that all constraints are satisfied, this suboptimal

trajectory might be satisfactory. The weighting scheme discussed above

would change the cost functional of equation (6) to the form

N QI iz(i)2 + Wi I py~)-Y~)]

where Qi would be larger for the first several values than for subsequent

ones. We implemented such a procedure, and also allowed for zero weights

in the cost functional for the later segments. Several simulations of

a procedure such as this indicated that corputation time was not decreased,

and that the trajectories obtained were significantly different from those

of the original implementation.

Finally, it would be true that in practice the solution to the

previous N segment problem would be provided as an initial guess for the

next problem. Our results showed that a considerable savings in computa-

tion time may be realized, but even with this, solution times are

considered to be too long for the proposed application. In a typical

case a savings of approximately 50% in overall computation time would

occur when a good initial guess was made available.
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VII. CONCLUSION

We set out at the start of this short project to attempt to make

a contribution to the general field of nonlinear programming algorithms,

as well as to investigate the properties of a particular problem.

Unfortunately, several ideas did not come to fruition as we had hoped.

For example, during the course of the project the author tried to

understand and demonstrate the practical consequences of the theoretical

results on parallel dynamic programming as stated in the paper by

Bertsekas (ref. 47). Little progress was made in the implementation

of this material and there are no results to report.

In a similar vein, the use of parallel processing in problems of

the sort arising in nonlinear programming has yet to be accomplished.

The communications aspect and coordination of search data has been a

stumbling block.

What we have accomplished is to add to the body of user information

with regard to the current state of research in nonlinear programming

algorithms. We selected and tested a set of programs that illustrate

the major trends in the field, and have shown that in fact these methods

are successful.

We pointed out, however, that the current methods do not seem

capable of meeting the computational demands of the terrain following

and terrain avoidance path generation problem. Several possible

simplifications and modifications of the problem statement could be

introduced in order to speed solution.

The author is grateful to the Air Force Office of Scientific

Research for providing minigrant support for the accomplishment of

the project. Having been involved in this study, the author intends to

pursue research into some of the unsolved areas that he was exposed to.
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